Agricultural buildings with timber structure – Preventative chemical wood preservation inevitably required?

Yuan Jiang¹, Philipp Dietsch¹, Stefan Winter¹

ABSTRACT: Wood preservation is an important issue for agricultural buildings with timber structure. This is among others due to their halfway opened construction, high level of moisture release from livestock breeding or storing goods. However, regarding the possibly high moisture content in the building structure and the potential threat caused by wood-destroying organisms, there is still a substantial need for research. The latest results of the research work carried out by Technical University of Munich, in cooperation with the Bavarian State Research Center for Agriculture, show that, for the most agricultural buildings built from spruce, no preventative chemical wood preservation is necessary to ensure a durable construction.

KEYWORDS: agricultural building, timber structure, wood moisture content, chemical wood preservation

1 INTRODUCTION

Wood plays an important role in the construction of agricultural buildings. Especially in rural areas, this natural and renewable raw material is increasingly available. As a building material, wood is preferred by many farmers. That is because they themselves are often forest owners and this material can be used for a variety of construction types and different building utilizations. As an organic material, however, wood must be protected against harmful organisms (fungi, insects). Thus, in order to ensure the stability and durability of agricultural timber buildings an effective wood preservation is of great importance.

In order to avoid fungal attack, 20 % wood moisture content (MC) is usually set among experts as general upper limit. According to the current German standard for wood preservation DIN 68800-1:2012 the ambient condition of timber elements could be assigned into different Use Classes (GK), which go from GK 0 (with MC “constantly” < 20 %) to GK 5 (with MC “constantly” > 20 %) [1]. Although timber could also be attacked by insects at a lower level of wood moisture content, the risk of such an attack is considered as insignificant. The reason for this is that, nowadays the most of the timber materials are applied after going through technical drying process.

Based on the present state of knowledge, agricultural buildings of timber construction, e.g. stables or warehouses, should be classified into GK 2 to GK 3 (with MC “occasionally” to “frequently” > 20), as a result of their construction design and building usage.

Spruce, however, as for the construction of agricultural buildings primarily used wood species, is due to its limited durability only allowed in GK 0 - if no additional wood preservation measures are applied. The additional wood preservation measures include in particular: preventive constructional measures and chemical preservatives [2, 3].

In the DIN 68800 series standards, agricultural buildings have not yet been explicitly dealt with. In particular, there is a lack of statements towards the so-called "special constructional measures", viz. constructive wood preservation measures which allow a classification of the timber elements into GK 0. Though chemical wood preservation offers one possible solution, but in areas with direct contact with animals and stored goods the use of chemical preservatives must be excluded. In consulting practice, the application of chemical wood preservatives is as well not recommended concerning the possible accumulation of hazardous substances in the food chain. The contradiction that no chemical preservative is desired for reasons of food safety, and on the other hand neither clear rules for the classification of agricultural buildings nor special constructional measures are available, is putting the building owners, planers and test engineers in an extremely difficult situation.

2 METHODS

In a current research project funded by the Bavarian state institute of forestry (LWF), agricultural timber buildings in typical cases of construction and application are systematically studied and assessed by means of climate and wood moisture monitoring.
For the long-term measurements, a total of thirteen agricultural buildings with their location in South Bavaria (Germany) in the field of stables and warehouses are investigated (Figure 1). Depending on the size, the internal layout and the use of the building, individual monitoring concept was created for each building. Various conditions are recorded across the building area. These are e.g. sections with unusual climate conditions due to local moisture ingress or accumulation moist air in narrow space.

![Figure 1: Locations of all selected monitoring objects](image1)

For the measuring of wood moisture content, the method of electrical resistance measurement was chosen. The measuring system illustrated in Figure 2 was used, which has been successfully applied in prior research projects [4, 5]. Depending on the situation, each measuring system comprises two to four measuring points, at which the wood moisture and the material temperature are measured at defined depths. The building indoor climate is recorded via an external sensor unit. In addition, a weather station is installed in the near of the measuring objects.

![Figure 2: Schematic illustration of the measuring system](image2)

3 INDOOR VS. OUTDOOR CLIMATE

The measuring systems and techniques were installed in the period from December 2014 to December 2015. At the time of writing this article, the measuring period of all thirteen objects was more than two years. In order to make the results of the measuring objects comparable, the measurement data are evaluated for a continuous period of one year.

In Figure 3, the indoor and outdoor climate of the investigated objects are summarized. As additional information, the boundary of relative humidity according to DIN 68800-1 is drawn. This indicates that, with an average relative humidity of up to 85 % and no other moisture load, the wood equilibrium moisture content of 20 % should not be exceeded. It can be clearly seen that, depending on the use and constructive design of the building, the objects differ in their climatic conditions, sometimes only slightly, but sometimes significantly.

![Figure 3: Climatic conditions in monitored objects](image3)

STABLES

In the cattle stables, the temperatures are above and the relative humidity below the values of the outdoor climate. The outlier is the only warm stable, in which the livestock are kept tethered (red circle in Figure 3). Compared to other cold stable, higher average temperature and relative humidity are measured. The stable with tethering systems, in which the animals cannot move freely, were widespread until the 1970s and are characterized by the principle of closed construction. Recent studies on performance and animal welfare of dairy cattle prioritize the open-spaced barns with good ventilation through open construction [6].

The relative humidity in the pigsties is slightly lower than that of the cattle stables. Timber, as building material in pigsties, is usually applied in the roof construction. Load-bearing outer walls are normally solid. The evacuation and ventilation takes place via small windows, outlet flaps which could be opened while the animals going in and out, open roofs or chimney with support of direct mechanical ventilation.

The poultry houses are a little bit warmer compared to the other stables. In poultry farming, ventilation is usually achieved by means of an appropriate ventilation system. The lower temperature among all three measuring points is achieved by the climate sensor, which is positioned at an open window of the stable.
WAREHOUSES

In the mostly closed warehouse for mineral fertilizers, the climate tends to be drier than it in the stables. That is because mineral fertilizer is a highly hygroscopic material that can absorb moisture from the air.

In the hay drying and storage building, high temperatures of about 30 °C and relative humidity of around 80 % were achieved at the time of drying. By contrast, during the remaining periods of storage the temperature is strongly dependent on the outdoor temperature, viz. comparatively low on average. Also the average humidity is lower than those of the other warehouses.

Due to the open construction, the storage house for wood chips has an almost external climate with slightly reduced air humidity.

An interesting object is the potato storage building. In this building, expected temperatures and relatively low relative humidity were measured in the uninsulated, by a false ceiling from the storage room constructively separated roof area. In the closed and structurally insulated storage room (Figure 4), however, an average of 25% higher relative humidity was recorded. This is resulted from the cool and moist storage conditions that are essential for the potatoes and the necessary air conditioning of the building area.

Figure 4: Storage room of potato warehouse

4 WOOD MOISTURE CONTENT

As an important part of the monitoring, wood moisture content are measured at different depths of the structural components. However, in order to assess the potential risk of wood-destroying fungi, the following chapters will focus on the wood moisture content that measured in the area near the surface (at 15 mm).

The wood moisture contents reflect mostly quite well the indoor climate. In all stables, with the exception of the warm stable, wood moisture contents below 20 % were permanently measured at the majority of measuring points. Wood moisture contents above 20 % occur mainly in the area of local particularities (e.g. under open roof, over manure area or directly in the milking parlor). In the warehouses, wood moisture contents of lower the 20 % were also measured. On average they are slightly below the wood moisture contents abstained in the stables. Exceptions are the timber components in the storage room of potatoes and those in the woodchip storage house in direct contact with the wood chips.

At 60 out of a total of 78 measuring points, the wood moisture contents were permanently below 20 %. For 10 out of the remaining 18 measuring points, the period, in which the upper limit is exceeded, was no longer than 1/5 of the total measuring time; for 4 of the rest 8 measuring points this period was between 20 % and 40 % of the total measuring time; for the last four measuring points wood moisture contents of over 20 % were measured in more than 40 % of the total measuring time.

5 u>20% ALONE IS NOT ENOUGH

With an additional visual inspection of all building components with measuring points and additional survey of the building occupants, no fungal attack was detected. In order to elucidate this positive, however at first glance not conclusive result, the wood-decaying model is used, which is derived by Viitanen and Ritschkoff [7] from extensive laboratory experiments and summarized by Kehl [8]. This takes into account that a fungus attack and fungal growth depends - in addition to the wood moisture content- also on the duration of the surrounding air humidity and the temperature.

The wood-decaying model applied here is divided into two parts. On the one hand, it has to be examined which surrounding conditions have to be achieved and maintained over which period of time so that the fungal spores could be "activated". In the case of potato storage building, about 7 °C and 95 % relative humidity prevail during storage. According to the wood-decaying model, these climate conditions should be maintained for at least 120 days until the germination of fungal spores, see Figure 5.

Figure 5: wood-decaying model of Viitanen [8] – phase I: "Activate" of fungal spores

The second phase is the "starting" of the fungal growth or the beginning of the wood decay. Again, certain climatic conditions are necessary, and the necessary time
is again dependent on the surrounding climate conditions. In the same case of the potato storage building, the climate conditions mentioned above have to be maintained over a period of almost 90 days until the fungal start to growth, see Figure 6. With a reduction of the relative humidity to 90 % (t = 20 °C), a period of more than 12 months would be required.

Kehl [8] derived a simplified engineering approach from the detailed wood-decaying model of Viitanen. In this approach, a boundary line is set for the surrounding climate condition, below which no wood decay would take place, even after 12 months. With help of sorption isotherms, this temperature-dependent boundary line of relative humidity was transferred to wood moisture content. Figure 7 shows that, in contrast to the upper limit according to DIN 68800-1, a temperature-dependent limit curve for the maximum permissible wood moisture content, below which fungal attack can be avoided. The gray area represents the fluctuation range, taking into account the different wood moisture contents that occur during absorption and desorption.

In order to assess the potential risk of fungi attack, a closer inspection of the coupled influences of wood moisture content and surrounding temperature is carried out with the aid of this model on all building components with wood moisture content above 20 %. The wood moisture contents and their associated temperatures are plotted as point cloud in the diagram derived from the wood-decaying model, see Figure 7. These values are compared with the temperature-dependent boundary line. By means of this representation, it could be well recognized that the high wood moisture contents (over 20 %) measured in winter would not lead to wood decay. Due to the prevailing low temperatures at that time, no fungal infestation is possible.

6 EXAMPLE PROJECTS

In the following, three exemplary measuring points are discussed in more detail using the approach explained previously. The amount of the days, on which average wood moisture content exceeded 20 %, is shown additionally as curve of cumulative sum.

The first example is a calves stable (Figure 8), in which wood moisture contents above 20 % were measured on the side of the open eaves for 47 almost consecutive days. Considering only the upper limit according to DIN 68800, several data points crossed over the 20 %-limit, which would result in a classification of this specific building component in Use Classes other than GK 0 or 1. If one compares the measuring data with the previously presented, engineering approach, in which the temperature is taken into account, none of the data points lie within the gray fluctuation range, viz. fungal growth on the building component can be avoided.

Figure 6: wood-decaying model of Viitanen [8] – phase II: “Start” of fungal growth

Figure 7: Temperature-dependent boundary for the assessment of the potential wood decay

Figure 8: Evaluation of data from calves stable
In the second example, a dairy cattle stable (Figure 9), measurements were taken on a column which lies directly in the area of a milking parlor. This area has to be cleaned regularly with a water jet. Near to the surface of this column, wood moisture content is constantly over 20%. Also when combined with the temperature, all data points fall into the gray area where there is a risk of fungal growth. However, despite this, no fungal attack was determined on this building component. This could be due to the fact that the fungal spores wasn't been "activated", since the required air humidity of at least 95% was not reached. On the other hand, a possible "wash out effect" is also conceivable, as a result of the cleaning process.

Finally, it is necessary to take a second look at the storage room of the potato storage building (Figure 10). During the storage, wood moisture contents of over 20% were recorded for a long period. At least half of the data points fall into the gray area, in which fungal growth is possible. However, here was also no fungal attack on the building component detected. A closer inspection of the climate data shows that in the potato storage room prevailed from the end of November to the beginning of April around 7 °C and 95% relative humidity. The relative humidity fell thereafter to about 90% and remained at this level for the next 4 to 5 months, with temperatures ranging between 7 and 15 °C. This leads to the conclusion that, despite any possible "activation" of the fungal spores, the necessary climatic conditions after germination for "starting" fungal growth were not fulfilled for a sufficient period of time.

Figure 9: Evaluation of data from dairy cattle stable

Figure 10: Evaluation of data from potato storage building

7 CONCLUSIONS

Until March 2017, more than nine millions of data were collected and evaluated. Diagrams for the course of the wood moisture content, the in- and outdoor climate were plotted over time. Wood moisture content over 20% was documented at 18 of a total of 78 measuring points. By applying the wood-decaying model of Viitanen [7, 8], viz. when the influence of temperature was taken into account, the risk of fungal growth can be excluded in 13 of the 18 measuring points, since the measured values lie clearly below the boundary (Figure 3). In an additional visual inspection of the investigated objects and a survey of the building owners, no wood decay was detected.

The positive results obtained from those 13 agricultural buildings does not mean that no wood preservation measure is necessary. In the planning of constructional wood preservation measures, one should distinguish between local influences, which require only local measures, and global influences, for which global solutions are necessary. An example of local influence is the columns in the area of milking parlor. A possible solution for this would be the protection of timber columns from direct humidification by means of ventilated board shuttering. For new construction of such milking area, the use of more durable wood species should be taken into consideration. As an alternative to this, reinforced concrete elements could be applied up to a height of e.g. 1.5 m. An example of global influences could be the air-conditioning in the potato storage building. In this case, the use of wood species of higher...
durability, e.g. Larch and Douglas fir heartwood, should be considered.

In March 2018 the measurements in 10 out of 13 objects with definitely no risk of fungal attack have been terminated. The over twelve millions of data are going to be further evaluated. The measurements in the objects with potential risk of fungal growth will be continued. This is in order to, for example, prove the effectiveness of local wood preservation measures, which have already been allied on the building components. For projects under global influences, visual inspection is going to be carried out regularly.

In addition to the monitoring work mentioned above, preventive constructive measures are going to be established, which should ensure a lasting protection of timber constructions in agricultural buildings. It is aimed to, either define constructive measures that allow the classification of construction elements into Use Class 0 (no preventive chemical wood protection for spruce required) or lower the Use Class so far that by applying wood species with increased nature resistance the use of chemical wood preservatives could be waived. Such a construction catalogue would be comparable with the “special constructive measures” given in the standard DIN 68800-2 [2]. Those guidelines could possibly be introduced to complement DIN 68800-2, Appendix A, allowing its application also in terms of an approval by building-authorities. This work on creating such a catalog is in full swing at the project partner, the Bavarian State Research Center for Agriculture (LfL).

REFERENCES